GLOBAL FORUM

London, October 24 & 25, 2012
Modular GTL
global solutions and projects
While the information contained herein is believed to be accurate, no representation or warranty, express or implied is or will be given by the Company or its directors, employees or advisers or any other person as to the accuracy, completeness or fairness of this presentation and, so far as permitted by law and except in the case of fraud by the party concerned, no responsibility or liability whatsoever is accepted for the accuracy or sufficiency thereof or for any errors, omissions or misstatements, negligent or otherwise, relating thereto.

Except where otherwise indicated, this presentation speaks as of the date hereof. The delivery of this presentation shall under no circumstances create any implication that there has been no change in the affairs of the Company since the date hereof. In furnishing this presentation, the Company does not undertake any obligation to update any of the information contained herein or to correct any inaccuracies which may become apparent.

This presentation shall remain the property of the Company.
3 proven and operational GTL processes today

World scale GTL Gas monetization 300MMscf/d ++

Modular GTL Oilfield access <= 50MMscf/d
Entire GTL process

Modular SMR Reactor

61,000 hours SMR reactor & SMR catalyst in operation

Modular FT Reactor

52,000 hours FT reactor & FT catalyst in operation
Project delivery – exclusive partners

Project Timeline

- **FEED stage**
- **EPC stage**

Compact GTL

FLUOR

SBM Offshore

Qualifited EPC Contractor

Onshore project

Offshore project

Johnson Matthey Catalysts

GPP

Kawasaki
Commercial demonstration plant

World’s first modular fully integrated GTL facility!

- Gas pre-treatment
- Pre-reforming
- Reforming
- Waste heat recovery
- Process steam generation
- Syngas compression
- Fischer Tropsch synthesis
- FT cooling water system
- Tail gas recycling

Plant commissioned in Dec 2010. CompactGTL technology now approved by Petrobras for deployment.
Project examples

<table>
<thead>
<tr>
<th>Client</th>
<th>Region</th>
<th>Feed gas rate</th>
<th>Project driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC</td>
<td>MENA</td>
<td>50 MMscfd</td>
<td>Liberate crude production</td>
</tr>
<tr>
<td>NOC</td>
<td>Americas</td>
<td>25 MMscfd</td>
<td>EWT</td>
</tr>
<tr>
<td>NOC</td>
<td>Russia-CIS</td>
<td>10 MMscfd</td>
<td>Remote location</td>
</tr>
<tr>
<td>NOC</td>
<td>MENA</td>
<td>20 MMscfd</td>
<td>Liberate crude production</td>
</tr>
<tr>
<td>NOC</td>
<td>Russia-CIS</td>
<td>100 MMscfd</td>
<td>Remote location</td>
</tr>
<tr>
<td>IOC</td>
<td>Asia-Pacific</td>
<td>30 MMscfd</td>
<td>Eliminate flaring</td>
</tr>
</tbody>
</table>
Case Studies of opportunities

- The Analysis was carried out by Fugro Robertson, using data from the Wood Mackenzie global database. Three generic situations were identified

- Case 1: gas flaring limit imposed on a field leading to shut-in production

- Case 2: onshore field awaiting or under development with no nearby gas infrastructure – this means gas disposal must be by reinjection

- Case 3: as Case 2, but with an offshore field
Case 1 – gas flaring limit

- Where an oilfield is subject to a flaring limit there will be shut-in production due to the amount of associated gas
- A CompactGTL process would allow the bringing forward of this production
- Likely examples of this will occur in Nigeria

- Assuming that:
 - Oil production is brought forward by 5 years
 - CompactGTL process with 12 MMscf/d leading to 1 Mstb/d of additional liquids output
 - Royalty rate of 15% and a Tax rate of 85%

- Results for 10 years of operation of the CompactGTL plant are very positive
 - Sensitivities of results also presented
Case 1 – Results with CompactGTL

<table>
<thead>
<tr>
<th>Economic Metrics</th>
<th>Undiscounted Profit $MM</th>
<th>NPV 10 $MM</th>
<th>Reserves MMboe</th>
<th>NPV10/Boe $/Boe</th>
<th>Payback Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.3</td>
<td>62.8</td>
<td>3.7</td>
<td>17.20</td>
<td>2015</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>Leasing half of GTL capex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.8</td>
<td>81.4</td>
<td>3.7</td>
<td>22.31</td>
<td>2015</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>Bringing forward production 7 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>92.7</td>
<td>3.7</td>
<td>25.39</td>
<td>2015</td>
</tr>
</tbody>
</table>
Case 2 – CompactGTL vs gas injection, onshore

- For an oilfield under development where there is no nearby gas infrastructure or market the only viable option for ANG is gas reinjection
- CompactGTL represents a viable option to reinjection
- There are numerous examples to be found in Russia
- Other examples occur in:
 - Central Asia
 - Middle East
 - West Africa
 - South America
 - North Africa
- The economic test is to compare the two options by taking one as the base case and then comparing it incrementally to the other case
Case 2 – CompactGTL vs gas injection, onshore

• The key assumptions are the costs of gas injection
 – The capex for this is not insubstantial consisting of injection well(s) and associated equipment

• The CompactGTL process is for a 12 MMscf/day gas throughput to produce 1 Mstb/day of synthetic oil

• The fiscal terms are taken to be those of Russia with 24% tax rate, $30 per barrel export duty and mineral extraction tax (MET) of $2 per barrel and $0.6 per MCF for gas; this last cost is paid even for gas injection operations

• Results are positive with 11.7% ROR
Economic Metrics

<table>
<thead>
<tr>
<th>Undiscounted Profit $MM</th>
<th>NPV 10 $MM</th>
<th>IRR</th>
<th>Reserves MMboe</th>
<th>NPV10/Boe $/Boe</th>
<th>DPIR $/$</th>
<th>Payback Year</th>
<th>Maximum Exposure $MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.40</td>
<td>8.35</td>
<td>11.7%</td>
<td>3.0</td>
<td>2.77</td>
<td>0.09</td>
<td>2019</td>
<td>101.3</td>
</tr>
</tbody>
</table>

Incremental Gross Cash Flow

- **Incremental Annual Gross Cash Flow**
- **Incremental Cumulative Gross Cash Flow**
Case 3 – CompactGTL vs gas injection, offshore

- For an oilfield under development where there is no nearby gas infrastructure or market the only viable option for ANG is gas reinjection
- CompactGTL represents a credible option to reinjection

- There are examples of target fields in abundance:
 - Australia
 - Far East
 - West Africa
 - Southwest Africa
 - South America

- The economic test is to compare the two options by taking one as the base case and then comparing it incrementally to the other case
Case 3 – CompactGTL vs gas injection, offshore

- The key assumptions are the costs of gas injection
 - For the most likely case of a deepwater field with an FPSO, these costs are high:
 - Injection well(s)
 - SURF cost
 - Gas compression

- A selection of fiscal terms were modelled:
 - PSC terms typical of West Africa
 - Tax/royalty terms typical of Australia, Ghana, Namibia

- Results are positive with 15.2% ROR and the PSC terms and even more positive with tax/royalty at 16.7% ROR
Case 3 – results with PSC terms

<table>
<thead>
<tr>
<th>Economic Metrics</th>
<th>Undisc Profit $MM</th>
<th>NPV 10 $MM</th>
<th>IRR</th>
<th>Reserves MMboe</th>
<th>NPV10/Boe $/Boe</th>
<th>DPIR $/$</th>
<th>Payback Year</th>
<th>Maximum Exposure $MM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61.20</td>
<td>14.04</td>
<td>15.2%</td>
<td>2.7</td>
<td>5.13</td>
<td>0.31</td>
<td>2017</td>
<td>66.7</td>
</tr>
</tbody>
</table>

Incremental Gross Cash Flow

- **Incremental Annual Gross Cash Flow**
- **Incremental Cumulative Gross Cash Flow**

Year

- **2012**
- **2013**
- **2014**
- **2015**
- **2016**
- **2017**
- **2018**
- **2019**
- **2020**
- **2021**
- **2022**
- **2023**
- **2024**
- **2025**
- **2026**
- **2027**
- **2028**
- **2029**
- **2030**
- **2031**
- **2032**
- **2033**
- **2034**
- **2035**
- **2036**

$ Million (Nominal)

- **-80**
- **-60**
- **-40**
- **-20**
- **0**
- **20**
- **40**
- **60**
- **80**
Case 3 – results with tax/royalty terms

<table>
<thead>
<tr>
<th>Economic Metrics</th>
<th>Undisc Profit $MM</th>
<th>NPV 10 $MM</th>
<th>IRR</th>
<th>Reserves MMboe</th>
<th>NPV10/Boe $/Boe</th>
<th>DPIR $$</th>
<th>Payback Year</th>
<th>Maximum Exposure $MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.27</td>
<td>18.77</td>
<td>16.7%</td>
<td>2.7</td>
<td>6.86</td>
<td>1.58</td>
<td>2017</td>
<td>66.7</td>
<td></td>
</tr>
</tbody>
</table>

Incremental Gross Cash Flow

- **Incremental Annual Gross Cash Flow**
- **Incremental Cumulative Gross Cash Flow**
A ‘Win-Win’ for IOCs, NOCs and Governments

IOCs
- Enhance production
- Unlock new discoveries
- Increase recoverable reserves
- Add gas reserves to balance sheet

NOCs
- Increase in PSC profit oil
- Greater tax revenues
- Environmental “Kudos”

Governments
- Preserve and utilise National natural resources
- Gain access to World Bank finance