Solving the problem of Associated Gas Small Scale GTL Plants
While the information contained herein is believed to be accurate, no representation or warranty, express or implied is or will be given by the Company or its directors, employees or advisers or any other person as to the accuracy, completeness or fairness of this presentation and, so far as permitted by law and except in the case of fraud by the party concerned, no responsibility or liability whatsoever is accepted for the accuracy or sufficiency thereof or for any errors, omissions or misstatements, negligent or otherwise, relating thereto.

Except where otherwise indicated, this presentation speaks as of the date hereof. The delivery of this presentation shall under no circumstances create any implication that there has been no change in the affairs of the Company since the date hereof. In furnishing this presentation, the Company does not undertake any obligation to update any of the information contained herein or to correct any inaccuracies which may become apparent.

This presentation shall remain the property of the Company.
Stranded Oil!
2010: Vision realised

Delivering a turnkey associated gas solution to enable oilfield development

- Petrobras plant commissioned and now running under test
- Client commercial plant studies & pre-FEED’s at 200 bpd to 2,000 bpd
- Volume manufacturing supply chain established
- Continuously strengthening team with World-scale GTL experience
- CompactGTL Brazil subsidiary established in Rio de Janeiro
CGTL offers a workable technical solution

• **Safety**
 – Conventional SMR technology
 – No oxygen supply required
 – Offshore certification

• **Operability & Reliability**
 – No catalyst handling on facility
 – Exchangeable 25 tonne reactor modules
 – Handles high CO$_2$ gas
 – Handles variable gas composition & flow-rate

• **Seaworthiness**
 – Low liquid inventory
 – Low centre of gravity (C.O.G.)
 – Motion insensitivity

• **Scalability**
 – Accommodates production decline over field life
Commercial plant design

- 10 MMscfd gas feed
- 1,000 bbl/d syncrude production
- 2,400 T operating weight
- Configurable for:
 - Aframax
 - Suezmax
 - VLCC
25MMscf/d GTL integrated FPSO – SBM Offshore

- Fully integrated design
- Up to 32,000 bbl/d crude production
- 2,000 bbl/d GTL liquids production

Image courtesy of SBM Offshore
Process & Technology Overview
Process overview

Gas treatment
- Pre-wash
- Mercury removal
- Heating
- Sulphur removal

Syngas production
- SMR 1 reactor modules
- SMR 2 reactor modules
- Steam generation (WHR)
- Syngas compressor

FT synthesis
- FT cooling System
- Product flash

Gas feed
- Pre-reformer

Steam
- Water treatment

No Oxygen Required!

High CO₂ Possible!

Fuel treatment
- Mercury removal
- Sulphur removal

FT synthesis
- Product flash
- Syncrude

GC rich tail-gas
- GT drivers
- H₂ rich tail-gas
SMR mini-channel reactor layout

FUEL & COMBUSTION AIR

METHANE & STEAM

COMBUSTION LAYER

COMBUSTION EXHAUST

REFORMING LAYER

COMPLETE SMR REACTOR BLOCK

SYNGAS
Development approach

Lab Reactors | UK Pilot Plant | Brazil Plant | Commercial Plant

Commercial Plant Studies

Reactor & Catalyst Supplier Engagement

Prototype Reactor & Catalyst Evaluation

Supplier Selection

Pilot Reactor & Catalyst Manufacture

Requirements

Commercial Supply Chain Establishment
UK pilot plant operational for 4 years

- Installation at Wilton, NE England
- Plant commissioned July 2008

- Confirming catalyst & reactor performance from manufacturers
- Integrated operation – ‘gas in to liquids out’
- Operational stability, start-up & shut down procedures
- Variable feed gas composition & CO₂ content
- Operator training for larger plants
Inside the UK pilot plant

SMR process equipment

FT process equipment
Mini-channel CompactGTL reactors

- Brazed plate-fin reactor construction minimises metal content and weight
- Complete set of GTL reactors despatched by air-freight to Brazil
- Corrugated metallic catalyst inserts maximise active surface area per channel
- Automated catalyst insertion and removal
Commercial Demonstration Plant

World’s first modular fully integrated GTL facility!

Plant commissioned in December 2010. CompactGTL technology now approved by Petrobras for deployment

- Gas pre-treatment
- Pre-reforming
- Reforming
- Waste heat recovery
- Process steam generation
- Syngas compression
- Fischer Tropsch synthesis
- FT cooling water system
- Tail gas recycling

Image shown courtesy of Petrobras
Pre-commissioning and commissioning activities

1. Reduce FT catalyst in-situ, and reinstall Rx’s.
2. Reduction of Desulphurisation catalyst.
3. Commissioned Combustion Air Blower and heat up SMR Rx’s
4. Boil-out and passivate WHB, Steam-drum and Steam system.
5. Dry-out and curing of refractory in WHB.
7. Commissioned Pre-reformer.
8. SMR at 100% NG load with Syngas on-spec
10. Commission Syngas Compressor
11. Commission FT Membrane,
13. Commission FT Tail-gas system and close the Gas-loop.

Time frame from Pressure test with N$_2$ (Mechanical Completion) to First Oil

(13 November 2010 to 23 January 2011)
Current Status

- All equipment in pilot plant is operating at design H&MB values.
- Overall robustness of plant is excellent even though a large number of trips were experienced.
- Overall availability of SMR’s > 82% and FT with Gas loop > 70%.
- Design cases for the Commercial Demonstration plant were:
 - Lean Natural gas case
 - Rich Natural gas case
 - 15% CO₂ in the NG feed
- Additional performance and acceptance test runs completed apart form the three design cases mentioned above were:
 - 35% CO₂ in the NG feed.
 - 50% CO₂ in the NG feed.
Combined steam and CO\textsubscript{2} methane reforming

SMR with CO\textsubscript{2} addition

\begin{align*}
3\text{CH}_4 + 3\text{H}_2\text{O} &\quad = \quad 3\text{CO} + 9\text{H}_2 \quad \text{(Steam Methane Reforming)} \\
+ \quad \text{CO}_2 + \text{H}_2 &\quad = \quad \text{CO} + \text{H}_2\text{O} \quad \text{(Dry Methane Reforming)} \\
\hline
3\text{CH}_4 + 2\text{H}_2\text{O} + \text{CO}_2 &\quad = \quad 4\text{CO} + 8\text{H}_2 \quad \text{(Combined Syngas Product)}
\end{align*}

The combined Steam and CO\textsubscript{2} Syngas product is a more FT friendly feed stock i.e. Closer to H\textsubscript{2} :CO ratio of 2:1
Overall plant availability

<table>
<thead>
<tr>
<th>Trial 1, 2 & 3</th>
<th>SMR</th>
<th>FT & Gasloop</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Dec 2010 - 22 Oct 2012</td>
<td>82</td>
<td>70</td>
</tr>
<tr>
<td>Overall CDP Availability</td>
<td>92</td>
<td>83</td>
</tr>
<tr>
<td>CDP Service Factor</td>
<td>410</td>
<td>309</td>
</tr>
</tbody>
</table>

- **Overall availability** = \(\frac{\text{Actual operating time per month}}{\text{Total time per month}} \)
- **Service factor** = \(\frac{\text{Actual plant availability exclude “in sympathy” shut down}}{\text{Total time per month}} \)
Total number of plant trips

Trial 1 & 2 - 13 December 2010 - 22 October 2012

<table>
<thead>
<tr>
<th>Trips - Trial 1 & 2</th>
<th>Number</th>
<th>% of trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSBL</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>E&I</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Operations</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Mechanical / Design</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Total Trips</td>
<td>111</td>
<td>100</td>
</tr>
</tbody>
</table>
Conclusion

‘Standalone’ solution for oilfield development

Manufacturing route & partners established

CompactGTL structuring as a TURNKEY SOLUTION PROVIDER

UK pilot plant operational for 4 years

Petrobras plant commission and 2 years in operation
Solving the problem of Associated Gas
Small Scale GTL Plants

Thank you for your attention

Any questions?